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Dynamic Traffic Assignment (DTA) is long recognized as a key component for network planning and 

transport policy evaluations as well as for real-time traffic operation and management. How traffic is 
encapsulated in a DTA model has important implications on the accuracy and fidelity of the model results. 
This study compares and contrasts the properties of DTA modelled with point queues versus those with 
physical queues, and discusses their implications. One important finding is that with the more accurate physical 
queue paradigm, under certain congested conditions, solutions for the commonly adopted dynamic user 
optimal (DUO) route choice principle just do not exist. To provide some initial thinking to accommodate this 
finding, this study introduces the tolerance-based DUO principle. This paper also discusses its solution 
existence and uniqueness, develops a solution heuristic, and demonstrates its properties through numerical 
examples. Finally, we conclude by presenting some prospective future research directions. 
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1. INTRODUCTION 
 
The properties of dynamic traffic assignment (DTA) have important implications on its 

ability to portray the actual travel behaviour, and hence on the fidelity and accuracy of 
the model results. These properties depend strongly on the two components of DTA: the 
travel choice principle and the traffic-flow component. The travel choice principle 
models travellers’ propensity to travel, and if so, how they select their routes, departure 
times, modes, or destinations. In making such choices, travel time is one important 
element of their considerations. The commonly adopted travel choice principle is the 
dynamic extension of Wardrop’s (1952) principle called the Dynamic User Optimal 
(DUO) principle or its stochastic extension, Stochastic Dynamic User Optimal (SDUO) 
(Ran and Boyce, 1996). The travel choice principle can be formulated as either a 
nonlinear complementarity problem, variational inequality problem, or fixed-point 
problem. It is established that the existence of solutions requires the mapping function of 
the problem to be continuous (Theorem 1.4 in Nagurney, 1993) whereas the uniqueness 
of solution further requires the mapping function to be strictly monotonic (Theorem 1.8 
in Nagurney, 1993). Therefore, solution existence (uniqueness) requires route travel 
times to be continuous (strictly monotone) with respect to route flows.   

The traffic-flow component depicts how traffic propagates on a transport network and 
hence governs the network performance in terms of travel time.  This component can be 
modelled as a set of side constraints, as is traditionally accomplished. However, this 
approach could be cumbersome, rendering the resultant formulation hard to solve (Lo 
and Szeto, 2002a). Modelling the traffic-flow component as a unique mapping of route 
flows, on the other hand, opens up a new way to analyze DTA problems (e.g., Lo and 
Szeto, 2002a,b, 2004, 2005; Szeto and Lo, 2004), with the outputs of this mapping being 
the route travel times. This approach has two advantages: namely, first, it ensures the 
consistency between link travel times and link exit flows because link travel times are 
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uniquely derived from exit link flows; second, it allows us to determine the existence 
and uniqueness of solutions of DTA problems directly by simply checking whether the 
unique mapping is continuous and strictly monotonic. 

Capturing actual traffic behaviour in the traffic-flow component is one important 
current research direction. Indeed, past efforts have focused on capturing the following 
traffic behaviour:  
1) First-in first-out (FIFO) (e.g., Jayakrishnan et al., 1995; Astarita, 1996; Heydecker 

and Addison, 1998; Tong and Wong, 2000; Huang and Lam, 2002; Carey et al., 2003; 
Szeto and Lo, 2004): FIFO on the link level means that users who enter the link 
earlier will leave it sooner;  

2) Causality (e.g., Friesz et al., 1993; Heydecker and Addison, 1998; Carey et al., 2003): 
Causality means that the speed and travel time of a vehicle on a link is only affected 
by the speed of vehicles ahead, and;  

3) Queue spillback (e.g., Daganzo, 1994, 1995; Lo, 1999; Adamo et al., 1999; Tong and 
Wong, 2000; Kuwahara and Akamatsu, 2001; Rubio-Ardanaz et al., 2001, Lo and 
Szeto, 2002a,b, 2004, 2005; Szeto and Lo, 2004; Ziliaskopoulos et al., 2004): Queue 
spillback refers to the end of queue spilling backwards in the network. 

The above traffic behaviour governs the properties of DTA formulations such as the 
properties of route and origin-destination (OD) costs (e.g., continuity of route and OD 
costs), as well as solution properties (e.g., existence of solutions). The thesis “DTA: 
formulations, properties and extensions” (Szeto, 2003) studies and compares the 
properties of DTA with point queues and those with physical queues. One major finding 
in Szeto (2003) is that capturing detailed traffic dynamics, such as queue spillback, may 
violate the requirement on solution existence, resulting in the non-existence of DUO 
solutions. This finding shakes the very foundation of the analytical DTA approach. To 
accommodate this result, Szeto (2003) proposes the tolerance-based DUO principle, 
adapted from the bounded rationality notion originally proposed by Simon (1955). The 
notion of bounded rationality is also used by Mahmassani and colleagues (e.g., 
Mahmassani and Chang, 1987; Jayakrishnan et al., 1994; Hu and Mahmassani, 1997; 
Mahmassani and Liu, 1999) to capture the behaviour of individual travellers. The 
tolerance-based DUO principle here, however, is used to describe the route choice 
principle at the system level, as consistent with analytical DTA approaches, so that its 
properties in terms of solution existence and uniqueness can be explored. It can be 
considered as a relaxation of the traditional DUO principle with the traditional DUO 
principle as a special case.  

In this study, we illustrate, via a numerical example, how the point queue and physical 
queue paradigms can produce very different queuing predictions in congested networks 
wherein junction blockage is common. In the second example, we demonstrate the effect 
of parameters in the proposed heuristic route-swapping algorithm on the existence of 
solutions. In the third numerical example, we show how, in the absence of a traditional 
DUO solution, the tolerance-based DUO principle performs. The rest of paper is 
organized as follows. The next section discusses the properties of DTA with or without 
physical queue consideration, and their implications. Section 3 depicts the proposed 
tolerance-based DUO principle. Section 4 formulates the tolerance-based DUO route 
choice problem and discusses the existence and uniqueness of solutions. The route-
swapping heuristic and numerical examples are then described in Sections 5 and 6, 
respectively. Finally, Section 7 gives the summary and possible future research 
directions. 
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2. PROPERTIES OF DTA AND THEIR IMPLICATIONS 
 
Due to the space limitation, this section only summarizes the properties of DTA under 

the point-queue (e.g., Yang and Meng, 1998; Huang and Lam, 2002) and physical-queue 
(e.g., Tong and Wong, 2000; Lo and Szeto, 2002a, b, 2004, 2005) representations 
analyzed in Szeto (2003), including the route and OD travel costs as well as the solution 
properties of DTA, and discusses their implications. The properties are summarized in 
Table 1. 

 
TABLE 1: A comparison of the properties between point-queue and physical-queue 

DTA problems 
(a) Properties of route costs 

Route cost properties  Point-queue problems  Physical-queue problems 
Continuity w.r.t. route flows  Continuous under mild assumptions  Possibly discontinuous 

Monotonicity w.r.t. route flows  Usually non-monotonic  Usually non-monotonic 

Differentiability w.r.t. route flows  Differentiable under differentiable 
link travel time functions and  

non-differentiable under continuous 
exit flow functions 

 Possibly non-differentiable 

Continuity of OD travel time w.r.t.
demands 

 Continuous under mild assumptions  Possibly discontinuous 

(b) Solution properties 
Solution properties  Point-queue problems  Physical-queue problems 

Causality  Obey causality for all existing link 
travel time functions but do not 

follow causality for some exit flow 
functions; e.g. exit flow at a 

particular time is a function of the 
number of vehicles at that time 

 Obey causality 

Link FIFO  May or may not satisfy Link FIFO, 
depending on the choice of travel 

time or exit flow functions 

 May or may not satisfy Link 
FIFO, depending on whether 

additional variables are 
introduced to capture Link 

FIFO 

Route FIFO   Satisfy Route FIFO if they satisfy 
Link FIFO 

 Satisfy Route FIFO if they 
satisfy Link FIFO 

OD FIFO  Satisfy this property under the DUO 
condition and certain assumptions, 

but not satisfy under the SDUO 
conditions 

 Satisfy this property under the 
DUO condition and certain 
assumptions, but not satisfy 
under the SDUO conditions 

Existence   Must exist  May not exist 

Uniqueness  Non-unique in terms of route flows 
and link flows 

 Non-unique in terms of route 
flows and link flows 

 
2.1 Common properties and their implications 

 
Under both queuing representations, we observe that  

(i) The route cost is non-monotonic with respect to route flows; 
(ii) The route cost is non-differentiable with respect to route flows if certain traffic 

flow models are adopted; 
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(iii) Whether the solutions follow causality and FIFO (on the link, route and origin 
destination (OD) level) depends on the underlying traffic flow models employed, 
and; 

(iv) Solutions may not be unique if they exist. 
The non-monotone and non-differentiability properties lead to difficulties in finding 

solutions if one exists at all, because the convergence of existing algorithms rely on 
either monotonicity or differentiability. One may rely on less restrictive algorithms such 
as genetic algorithm (e.g., Lo and Szeto, 2002b) or simulated annealing (e.g., Friesz et 
al., 1992) for solutions.  

Violations of Link FIFO and causality imply poor reflection of reality because traffic 
tends to behave in a FIFO manner (Carey, 1992) and that vehicle following is consistent 
with causality (Heydecker and Addison, 1998). Models that exhibit these violations are 
unreliable.   

The non-uniqueness of link flows implies that traffic can be predicted differently in 
various solutions. This raises the question of accuracy of the DTA models for various 
applications.  Other than this, in actual applications, one must consider all possible 
solutions to cater for the worse-case scenarios in the planning and design. 
 
2.2 Unique properties of physical-queue DTA and their implications 

 
According to Table 1, we can observe three unique properties for the physical-queue 

DTA as compared with the point queue one, which are summarized in the following 
propositions: 

Proposition 1: Under the physical queue representation, route costs may not be 
continuous with respect to route flows.  

Proposition 2: Under the physical queue representation, OD travel costs may not be 
continuous with respect to demands.  

Proposition 3: A Wardropian solution may not exist to the DTA problem with physical 
queues. 

All these unique properties are related to the existence of solutions to DTA problems. 
The implication of the discontinuity property of the supply function (proposition 2) is 
that solutions may not exist for DUO problems with elastic demands. For any OD pair at 
any departure time, one can imagine that three situations can happen as shown in Figure 
1. For cases (i) and (iii), a solution exists to the problem but for case (ii), no solution 
exists! For the fixed demand case, as demonstrated in Szeto (2003), and summarized in 
Table 1 and proposition 3, we clearly observe the trade-off between the existence of 
solutions and the levels of traffic dynamics captured; point-queue DTA solutions always 
exist whereas those for physical-queue problems may not.  The reason is that under 
congested conditions, the route travel time functions may become discontinuous 
(proposition 1), making it impossible in certain cases to find solutions that satisfy the 
equilibrium route choice principle perfectly. If the objective is to achieve DUO solutions, 
then DTA models with physical queues may be a problem despite that they can model 
the actual traffic flow features better. This theoretical finding may prove to be important 
in the search of new behaviour rules for analytical formulations that are behaviourally 
sound and consistent with the actual network behaviour. Sections 3 to 5 describe the 
work in Szeto (2003) in dealing with the possibility of the non-existence of solutions to 
the DTA problems with physical queues.  
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FIGURE 1: Three possible scenarios for the DUO problem with elastic demands 
 

3. TOLERANCE-BASED DYNAMIC USER OPTIMAL PRINCIPLE 
 
The tolerance-based DUO principle proposed by Szeto (2003) requires the travel times 

of all used routes between the same OD pair to be similar, or within an acceptable 
tolerance maxε  from the minimum OD route travel time, where the tolerance level is 
purely a function of the behaviour of the network users. This principle, adapted from the 
bounded-rationality behavioural notion, can be expressed as: 
 If 0)( >tf rs

p , then max)()( ε≤π−η tt rsrs
p , (1) 

 tprstt rsrs
p ,,,0)()( ∀≥π−η , (2) 

where )(tf rs
p  and )(trs

pη  are respectively the flow between OD pair rs entering route p 

at time t and the corresponding route travel time; )(trsπ  is the shortest OD travel time 

between OD pair rs for flows departing at time t; maxε  is the acceptable tolerance, a 
non-negative parameter obtained through travel behaviour surveys and experiments. In 
(1)-(2), t is an instant of time; in this paper, t is a time-slice index, as we consider a 
discrete-time DTA formulation. Condition (2) is included in this principle to ensure 

)(trsπ  to be the shortest OD travel time among all the possible routes between OD pair 

rs for flows departing at time t.  
By employing the following transformation function:  

 
⎩
⎨
⎧

>
≤≤=ε uyy

uyuy if
0fi0),( , (3) 

where u and y are independent non-negative variables, the tolerance-based DUO 
principle can be alternatively formulated as: 
 ( ) tprstttf rsrs

p
rs
p ,,,0),()()( max ∀=επ−ηε⋅ , (4) 

 ( ) tprstt rsrs
p ,,,0),()( max ∀≥επ−ηε . (5) 

Condition (5) implies condition (2) due to the requirement of the non-negative 
independent variable for the transformation function. Condition (4) implies (1), meaning 
that the travel time of a used route is greater than the minimum route travel time by not 
more than an acceptable level maxε . According to (4), if route p carries a positive flow 

Case (i) 

Case (ii) 

Case (iii) 

OD demand 

OD travel 
time 

Demand function
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at time t (i.e., 0)( >tf rs
p ), the transformation function ( )max),()( επ−ηε tt rsrs

p  must be 

equal to zero, implying max)()(0 ε≤π−η≤ tt rsrs
p due to the first condition of (3). In 

other words, if route p carries a positive flow at time t, the travel time of route p is 
greater than the minimum route travel time by not more than an acceptable level maxε . 

Note that if route p carries zero flow at time t (i.e., 0)( =tf rs
p ), ( )max),()( επ−ηε tt rsrs

p  

must be nonnegative due to (5) and hence the route travel time )(trs
pη  must be greater 

than or equal to the minimum route travel time )(trsπ .  

As a special case, if maxε  equals zero, conditions (4)-(5) can be reduced to the 
following: 
 ( ) tprstttf rsrs

p
rs
p ,,,00),()()( ∀=π−ηε⋅ , (6) 

 ( ) tprstt rsrs
p ,,,00),()( ∀≥π−ηε . (7) 

According to (3), we have: 

)()(
0)()(if)()(

0)()(0if0
)0),()(( tt

tttt

tt
tt rsrs

prsrs
p

rsrs
p

rsrs
prsrs

p π−η=
⎪⎩

⎪
⎨
⎧

>π−ηπ−η

≤π−η≤
=π−ηε . 

Therefore, equations (6)-(7) can be simplified to: 
 ( ) tprstttf rsrs

p
rs
p ,,,0)()()( ∀=π−η , (8) 

 tprstt rsrs
p ,,,0)()( ∀≥π−η , (9) 

or 
 If 0)( >tf rs

p , then 0)()( =π−η tt rsrs
p , (10) 

 tprstt rsrs
p ,,,0)()( ∀≥π−η . (11) 

Conditions (8)-(9) are the ideal DUO conditions. That is, if maxε  equals zero, 
equations (4)-(5) can be reduced to the ideal DUO conditions. According to this result, 
the tolerance-based principle is a generalization of the traditional DUO principle. 

 
4. TOLERANCE-BASED DUO ROUTE CHOICE PROBLEM 

 
4.1 Nonlinear complementarity problem (NCP) formulation 

 
For fixed demands, the DTA problem with the tolerance-based DUO route choice 

principle is to find a route flow vector *f  such that: 
 ( ) tprstttf rsrs

p
rs
p ,,,0),()()( max ∀=επ−ηε⋅ , (12) 

 ( ) tprstt rsrs
p ,,,0),()( max ∀≥επ−ηε , (13) 

 trstqtf rs
p

rs
p ,),()( ∀=∑ , (14) 

 tprst rs
tp

rs
p ,,),()( , ∀Φ=η f , (15) 
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 0≥f , (16) 
where )(tqrs  is the demand of OD pair rs at time t; (.),

rs
tpΦ  is a unique mapping 

yielding route travel times for a given route flow vector f .  
Equations (12)-(13) express the tolerance-based DUO principle. Equations (14) and 

(16) are the flow conservation and non-negativity conditions. Equation (15) considers 
the traffic flow component as a unique functional mapping yielding route travel times for 
given route flows. Many traffic flow models can be used for this mapping. Szeto’s (2003) 
numerical studies adopt the Cell Transmission Model (CTM) (Daganzo, 1994, 1995) as 
the underlying traffic flow model to capture the effect of realistic physical queuing, such 
as queue formation and dissipation, and queue spillback. In determining the route travel 
times in (15), we first use CTM to simulate the resultant traffic pattern, followed by the 
route travel time extraction procedure developed in Lo and Szeto (2002a). As CTM uses 
mathematical operations that produce unique traffic patterns for given route flows, and 
the route travel time extraction procedure produces unique outputs for given cumulative 
inflow and outflow curves, we establish a unique mapping yielding route travel costs for 
given route flows. The details of encapsulating CTM for dynamic traffic assignment 
models can be found in Lo (1999) and Lo and Szeto (2002a, b). 

The tolerance-based DUO route choice problem (12)-(16) can be reformulated as an 
NCP by introducing three more conditions. By attaching )(trsπ  to the flow conservation 

condition (14), we obtain: 

 trstqtft rs
p

rs
p

rs ,,0)()()( ∀=⎟
⎠
⎞⎜

⎝
⎛ −π ∑ . (17) 

As ),(trsπ the shortest OD travel time, must be greater than zero, 

0)()( =−∑ tqtf rs
p

rs
p  must hold at optimality. Adding this to the problem (12)-(16) 

will not alter the optimality condition. For mathematical completeness, we also introduce 
two more conditions to the original problem: 
 trstrs ,,0)( ∀≥π , (18) 

 trstqtf rs
p

rs
p ,,0)()( ∀≥−∑ . (19) 

They include 0)( >π trs  and 0)()( =−∑ tqtf rs
p

rs
p  as special cases and therefore do 

not change the optimality condition of the original problem (12)-(16). The DUO route 
choice problem with fixed demands can then be considered as the problem of finding a 
route flow vector *f  to satisfy (12)-(19).  

By putting (15) into (12) and (13), the DUO route choice problem with fixed demands 
(12)-(19) can be written as an NCP: to find *x  such that: 

 0≥⎟
⎠
⎞⎜

⎝
⎛= π

fx ,  (20) 

 ( )( ) 0, **T* =Φ⋅ fxFx , (21) 
and 
 ( )( ) 0, ** ≥Φ fxF , (22) 
where 
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 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∀π

∀
=

trst

tprstf
rs

rs
p

,),(

,,),(
x , (23) 

 ( )( )
( )( )

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∀−

∀επ−Φε
=Φ

∑ trstqtf

tprst
rs

p
rs
p

rsrs
tp

,),()(

,,,),(
,

max, f
fxF , (24) 

and ( )fΦ  is a vector of ( )( )tprsrs
tp ,,,, ∀Φ f ; π is a vector of shortest OD travel times, and; 

)(tf rs
p , )(trs

pη , )(trsπ , maxε , )(tqrs , and ( ).,
rs

tpΦ  follow earlier definitions. 

 
4.2 Solution existence and uniqueness 

 
For ease of explanation, we first define a non-negative gap function ( )fH : 

 ( ) ( )( )tprstttH rsrs
p

rs
p ,,,)()()(max ∀π−η⋅δ=f , (25) 

where the indicator variable )(trs
pδ  equals 1 if the flow on route p between OD pair rs at 

time t is nonzero, and equals zero otherwise. This gap is the largest difference between 
the travel times of all used routes and the corresponding shortest OD travel times under 
the route flow pattern f, and measures how far the current solution is from the traditional 
DUO solution. 

To analyze the existence and uniqueness of solutions, we define the theoretical gap 
(TG), which is the minimum of the largest difference between the travel times of all used 
routes and the corresponding shortest OD travel times of all feasible flow patterns. In 
other words, TG is the smallest gap of all the feasible solutions. Mathematically, the 
theoretical gap (TG) is expressed as follows: 
 ( ) 0minTG ≥= f

f
H , (26) 

The value of the theoretical gap depends on the network and the demand pattern.  
In DTA formulations with the more realistic physical-queue representation, the route 

travel time functions are not always continuous with respect to the route flows, rendering 
the existence of solutions not always possible (propositions 1 and 3), or equivalently 
their theoretical gap never reaches zero. For the tolerance-based DUO route choice 
problem with physical queues, in a similar manner, solution existence is not guaranteed. 
A solution exists to the problem if and only if the theoretical gap is less than or equal to 

maxε : 
  ( ) maxminTG ε≤= f

f
H . (27) 

According to (27), the existence of solutions to the physical-queue tolerance-based 
DUO problem depends on the theoretical gap (which is related to the network topology 
and demand pattern) and the parameter maxε  (which is related to the behaviour of the 
network users). In general, as maxε  and hence the constraint (27) are gradually relaxed, 
solution existence gradually becomes easier. However, we emphasize the importance of 
specifying the tolerance level from a behaviour perspective rather than as a numerical 
means for obtaining equilibrium solutions. If the tolerance level is specified at a level 
higher than the actual behaviour, then the solution will stop at a premature “equilibrium”, 
even though in reality, travellers are still swapping routes in the search of better ones. In 
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summary, solution existence is both a function of the network topology and travel 
demand, and the behavioural tolerance of the users on route swapping.  

On the issue of uniqueness of solution, as one can see, when maxε  approaches infinity, 
all feasible gap values satisfy (27) and hence the corresponding flows are solutions, 
implying that multiple solutions are possible in this problem.  In fact, even if the 
tolerance is zero (i.e., the problem becomes the traditional DUO problem), multiple 
solutions can still be possible as discussed in Section 2.1.  

 
5. SOLUTION METHOD 

 
This paper adopts the heuristic day-to-day route-swapping algorithm developed in 

Szeto (2003), which is modified from the route-swapping algorithm in Huang and Lam 
(2002). The advantage of this algorithm is that no matter the tolerance-based or 
traditional DUO solutions exist or not, the algorithm can simulate day-to-day flow 
patterns in addition to the within-day flow patterns. That is, the transition from 
disequilibrium to equilibrium or one state of disequilibrium to another can be described. 
This allows us to study the daily variations in network performance. The algorithmic 
detailed steps are outlined as follows: 
Step 1: Set the iteration counter τ = 1. Choose the initial route flow τ)(tf rs

p .  

Step 2: Determine the route travel time τη )(trs
p  through CTM and the route travel time 

extraction procedure as described in Lo (1999) and Lo and Szeto (2002a,b). 
Find ( )ptt rs

p
rs ∀η=π ττ ,)(min)( .  

Step 3: Update the route flow as below: 
( )( )ττττ+τ π−ηρ−= )()()()(,0max)( 1 tttftftf rsrs

p
rs
p

rs
p

rs
p , rs

t
rs PPp τ∈ ,/ , 

rs
t

rs
rs
p

rs
p

P

t
tftf

τ

τ
τ+τ

ψ
+=

,
1

)(
)()( , rs

tPp τ∈ , , 

 where 
( )∑

τ∈
+τττ −=ψ

rs
t

rs PPp

rs
p

rs
p

rs tftft
,/

1)()()( ; 

{ }max, )()(:max ε≤π−η= τττ ttpP rsrs
p

rs
t ; 

rsP  is the set of all feasible paths between OD pair rs. 

Step 4: Stop if ( ) maxε≤τfH  or maxτ=τ , where 

 ( ) ( )( )tprstttH rsrs
p

rs
p ,,,)()()(max ∀π−η⋅δ= ττττf  and maxτ  is the maximum 

number of iterations; Otherwise, set 1+τ=τ  and return to Step 2. 
 

6. NUMERICAL STUDIES 
 

In the three numerical studies conducted in this section, we aim to illustrate i) the 
difference between the point-queue and physical-queue modelling paradigms in terms of 
predicting queuing locations over time, the link occupancies over time, travel times, and 
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the resultant route choice pattern, ii) the effects of the tolerance and swapping rate on the 
existence of solutions, and iii) the impact of the initial solution and swapping rate on the 
final solution as well as on the non-equilibrium traffic pattern. The scenario setup for the 
last two numerical studies adopts from that in Szeto (2003) wherein the traditional DUO 
solution is known not to exist.   
 
6.1 A comparison between point queue and physical queue paradigms 

 
The scenario network consists of five nodes, four links and two OD pairs as shown in 

Figure 2. The two OD pairs are from node 1 to node 4 and from node 1 to node 5. Each 
OD pair contains one route. The route between OD pair (1,4) is called Route 1 whereas 
the route between OD pair (1,5) is called Route 2. The modelling horizon is set at 1200 
seconds. Traffic demand from node 1 to node 4 is 5400 vph and lasts for 200 seconds 
from the start of the modelling horizon. Traffic demand from node 1 to node 5 between 
time ω = 201 seconds and time ω = 300 seconds is 3600 vph. The detailed input 
parameters include: 
a. Free flow travel speed and shockwave speed: 48 km/hour  
b. Length of each link: Links (1,2) and (2,5): 1.067 km; Link (2,3): 0.4 km; Link (3,4): 

0.667 km 
c. Number of lanes: Links (1,2), (2,3), and (2,5): 3; Link (3,4): 1 
d. Saturation flow rate: 1800 vehicles/hour/lane  
e. Jam density: 125 vehicles/km 
f. The length of each time interval: 10 seconds 

 

1 

2 

5 

3 

Origin

Destination4 Destination

 
FIGURE 2: The scenario network for Example 6.1 

 
The results obtained from the cell transmission model (CTM) are compared with those 

from the simplified cell transmission model (SCTM), which ignore the storage capacity 
term in CTM.  Conceptually, SCTM is similar to the one proposed by Smith (1993). 
This type of point queue models, including SCTM and Smith’s model, is seldom 
proposed in the literature as a link is required to be divided into many segments which 
causes computational inefficiency when compared with other point-queue models. 
SCTM is adopted here to clearly show the traffic over time and space. If other point-
queue models are used, a linear interpolation is required to obtain the occupancy over 
time and space. 

Figure 3 and Figure 4 show the occupancy plots over time and space under the two 
modelling paradigms. The intensities of the shades correspond to the occupancy levels, 
as shown in the legend on the right side of the plot. As is customary, traffic propagates in 
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(a) Point-queue paradigm 
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(b) Physical-queue paradigm 
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FIGURE 3: Occupancy plots along Route 1 
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(a) Point-queue paradigm 
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FIGURE 4: Occupancy plots along Route 2 
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the direction of vertical axis, whereas the horizontal axis is for time. From these figures, 
one can see how introducing storage capacity in the traffic-flow modelling affects the 
occupancies over time and queuing locations. According to Figure 3a, a queue forms 
vertically at the exit of Link (2,3) starting from ω = 120 seconds because of the capacity 
reduction and the traffic between OD pair (1,4). However, according to Figure 3b, the 
queue forms horizontally, propagates backward, and passes node 2 at ω = 200 seconds. 
Because the queue stretches beyond node 2, it affects the traffic destined for node 5 also. 
From Figure 4b, despite that Link (2,5) is empty, the traffic destined for node 5 cannot 
leave the junction until after ω = 440 seconds, when the queue on Link (2,3) has started 
to dissipate. In addition, the resultant travel time for the traffic destined for node 5 is at 
least 280 seconds (Figure 5). These contrast sharply with the case under the point-queue 
paradigm in which the traffic destined for node 5 can leave the node 2 without delay at ω 
= 280 seconds (Figure 4a) and the travel time for the demands between OD pair (1,5) is 
160 seconds (Figure 5). The discrepancy is mainly attributed to the fundamental 
characteristic whether storage capacity is considered. The point-queue paradigm does 
not consider storage capacity when queues form, and hence cannot capture queue 
spillback, whereas the physical-queue paradigm considers that effect and hence queue 
spillback. Note that the destination cell is modelled as a traffic sink that has an infinite 
capacity; all the traffic that enters this cell is considered to have left the network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5: Travel times on Route 2 under the two modeling paradigms 
 
If a new Link (1,5) were built with 3 lanes and 1.6 km long, the two modelling 

paradigms would predict different resultant route choice patterns for OD pair (1,5). 
Under this setting, Link (1,5) forms an independent route, which is called Route 3, for 
the travellers between OD pair (1,5) and its free flow travel time is 240 seconds. 
Moreover, if all the travellers select this Route 3, the resultant travel time of this link is 
also 240 seconds since the bottleneck capacity is smaller than the demand rate. Under 
the point-queue paradigm, even if all the travellers between OD pair (1,5) select Route 2, 
its route travel times, which is 160 seconds (Figure 5), are still smaller than the free flow 
travel time of Route 3. As a result, all the travellers between node 1 and node 5 select 
Route 2 under the DUO route choice principle. However, under the physical-queue 
paradigm, if one chose Route 2, its travel times would be 310 seconds (Figure 5), which 
is higher than the travel time on Route 3. According to the DUO principle, all the 
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travellers between OD pair (1,5) choose Route 3. This observation agrees with the 
results shown in Kuwahara and Akamatsu (2001). 

This numerical example clearly shows that the predictions about queuing locations 
over time, the link occupancies over time, travel times, and the route choice pattern from 
physical-queue models are substantially different from those from point-queue ones in 
congested networks wherein junction blockage is common. The discrepancy is mainly 
attributed to the fundamental characteristic whether storage capacity is considered, and 
causes the network designs and traffic management schemes based on the point-queue 
models to be totally different from those based on physical-queue models. This seems to 
indicate that 1) simplifications from the physical-queue representation are inadequate in 
producing correct estimation results, and 2) resources for improving the current situation 
may be wrongly allocated if we rely on the estimation from point-queue models. 
 
6.2 Sensitivity of swapping rate and tolerance 

 
In this second numerical study, we illustrate how the tolerance-based DUO formulation 

performs. The network is as shown in Figure 6, consisting of 10 nodes, 12 links, and 3 
OD pairs: (1,6), (1,8), and (9,8). Each OD pair is linked by two routes, as listed in Table 
2. The study horizon is discretized into 10-second intervals. A traffic signal is located at 
node 3, with a cycle time of 80 seconds and green time of 40 seconds. The signal 
indicates green at the start of the modelling horizon. The traffic signal causes queue 
formation. The saturation flow rate ijs  (in vehicles/time interval) and free-flow travel 

time ijτ  (in seconds) of each link are also shown in Figure 6. Other link characteristics 
include:  
• Storage capacities: Link (1,6), Link (2,3), Link (3,4), Link (2,10), and Link (10,7) – 

16.67 vehicles; Link (5,6) – 33.33 vehicles; Link (4,5) and Link (5,8) – 50 vehicles; 
Link (7,8) – 83.33 vehicles; Link (1,2) – 150 vehicles; Link (9,7) – 200 vehicles; and 
Link (9,4) – 250 vehicles.  

• Merge priorities: Links (10,7) and (9,4) – 0.9; Links (9,7) and (3,4) – 0.1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6: The scenario network for Examples 6.2 and 6.3
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TABLE 2: OD – Route characteristics 
OD pair Route number Node sequence Free-flow travel time (seconds) 

1 1-2-3-4-5-6 100 (1, 6) 
6 1-6 145 
2 1-2-3-4-5-8 110 (1, 8) 
3 1-2-10-7-8 100 
4 9-7-8 90 (9, 8) 
5 9-4-5-8 110 

 
The departure time of traffic leaving an origin is indexed by t. Given that time is 

discretized at 10-second intervals, the actual departure time is thus 10t. In this example, 
we fix the route flows at the various departure times as:  
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For each combination of swapping rate and tolerance, the route-swapping algorithm is 
employed to determine solutions. The initial solution is obtained by an all-or-nothing 
assignment procedure. The algorithm stops when a tolerance-based DUO solution is 
found or when the maximum iteration number of 2000 is reached. The number of 
iterations performed for each combination of swapping rate and tolerance is shown in 
Table 3. An entry of “2000” indicates that the maximum number of iterations is reached 
without finding an equilibrium solution. This table clearly shows that the tolerance maxε  
and swapping rate ρ are important variables for reaching the tolerance-based DUO 
solutions (if they are reachable at all). The reason is that, as explained before, to a great 
extent, the tolerance defines the requirement of obtaining solutions. A higher tolerance 
means a lower requirement. Moreover, higher swapping rates or larger step sizes often 
cause the algorithm to hop from one point to another without approaching to the solution 
location. In this particular example, the shaded region in Table 3 represents the region 
wherein the route-swapping algorithm finds a solution. Obviously, this result is case-
specific and network-dependent, but generally one can see that a smaller swapping rate 
and a higher tolerance are generally more capable of stopping at an equilibrium solution. 

The swapping rate not only has implications on the possibility of finding solutions, but 
also on the computational time required for finding solutions, as one may expect. For a 
fixed tolerance, if the solution is reachable, higher swapping rates typically mean faster 
solution times by having to go through a smaller number of iterations. For example, in 
Table 3, for the same maxε  of 1.1, the number of iterations drops from 170 to 7 when 
the swapping rate increases from 0.001 to 0.031. 
 
6.3 Sensitivity of non-equilibrium evolution to initial solution and swapping rate 

 
In this numerical study, we examine the effects of the initial solution and swapping 

rate on the network performance from day to day when the tolerance is small. The 
network setting and demand pattern are the same as in the previous numerical study. 
Four cases are set up for this purpose, as shown in Table 4. In all four cases, the 
tolerance is set to 0.1. As discussed earlier, it is known that the traditional DUO solution 
does not exist for this network and demand pattern. And by setting the tolerance level at 
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a low level, we expect the system to evolve without stopping at an equilibrium pattern.  
We wish to observe how the system oscillates. 

 
TABLE 3: The number of iterations for different combinations of swapping rates and 

tolerances 
Swapping Tolerance 

rate 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 
0.001 2000 2000 2000 228 192 170 151 141 139 137 
0.011 2000 2000 2000 2000 20 16 14 13 13 13 
0.021 2000 2000 2000 2000 2000 10 8 7 7 7 
0.031 2000 2000 2000 2000 2000 7 5 5 4 4 
0.041 2000 2000 2000 2000 2000 2000 5 5 3 3 
0.051 2000 2000 2000 2000 2000 2000 4 4 4 3 
0.061 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 
0.071 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 
0.081 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 
0.091 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

 
TABLE 4: Four testing cases 

Case Swapping rate Initial loading method 
1 0.001 All-or-nothing (AON) assignment 
2 0.091 All-or-nothing assignment 
3 0.001 Average loading (AL) assignment 
4 0.091 Average loading assignment 

 
Figure 7a shows the gap value over time (or from iteration to iteration) under the low 

swapping rate. In general, the gap value does not monotonically decrease with time. 
Instead, after a certain period, the gap increases and decreases periodically with a nearly 
constant cycle. Examining the detailed traffic results, the large increase in the gap value 
can be attributed to the effect of junction blockage. The phenomenon of blockage, which 
is depicted by physical-queue traffic models and happens in reality, can lead to 
substantial changes in the route travel times even with a small change in the flow pattern 
(proposition 1 in section 2). This implies that the current shortest route can become an 
unacceptable route in the next iteration, leading to a large gap. Based on this limited 
experiment, it is not clear whether this periodic behaviour shall always occur in the 
absence of a tolerance-based DUO solution. We leave the more exact and detailed 
treatment of this phenomenon to a future study.   

Figure 7a also illustrates that the choice of the initial solutions (AON or AL) affects 
the gap values of the early iterations. As the algorithm proceeds to a substantial number 
of iterations (1500 iterations for the small swapping rate and 5 iterations (not shown here 
due to the space limitation) for the high swapping rate), essentially the gap values 
produced by the different initial solutions show no appreciable differences. Both cases 
follow a similar periodic pattern of gap oscillation. Based on this limited experiment, it 
appears that the choice of the initial solutions does not have a substantial impact on the 
final evolving traffic pattern. On the other hand, the length of the periodicity is related to 
the swapping rate. For a low swapping rate, as seen from Figure 7a, it takes around 200+ 
iterations to complete a cycle; whereas for the case of a high swapping rate (not shown 
here), it just takes around 10 iterations. If we interpret the iterations as a day-to-day route 
adjustment process, more aggressive swapping behaviors lead to more frequent 
oscillations in network performance.   
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(b) The total system travel time over iterations 
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FIGURE 7: Gap value versus iteration and the corresponding TSTT under the low 

swapping rate 
  
To appreciate the implications of the gap swings on network performance, we plot the 

total system travel time (TSTT) in Figure 7b by following the same iteration sequence as 
in Figure 7a.  The TSTT varies from the high value of 5700 units to the low value of 
around 5200 units, or a change of around 10%. This level of travel time variation is 
perhaps well within our experience and expectation. Nevertheless, the change can be 
abrupt. As shown in Figure 7b, the system can jump from the peak TSTT to the bottom 
TSTT in the next iteration or vice versa. The interesting aspect is that even though we 
are considering a deterministic network with fixed demands and deterministic route 
choice principle, the network congestion can still vary substantially.  



48 

 

7. SUMMARY AND FUTURE RESEARCH DIRECTIONS 
 
7.1 Summary 
 

Other than the important findings on DTA properties and their implications, the major 
contributions of the thesis by Szeto (2003) is to provide some initial thinking on 
developing a framework to accommodate the possible non-existence of perfect DUO 
equilibrium solutions to the DTA problem under the physical queue paradigm. The 
proposed extension or relaxation is actually more reflective of our actual experience, as 
perfect DUO is an idealization anyway. Specifically, the thesis develops a route choice 
principle based on the notion of bounded rationality, namely tolerance-based DUO, and 
a modified route-swapping heuristic for solutions. The existence of a stable solution 
depends on the network topology and demand pattern, and also travellers’ behaviour on 
travel time tolerance. The thesis demonstrates that for a small tolerance, the system can 
keep on evolving without converging to a stable equilibrium, meaning that equilibrium 
traffic assignment is not an intrinsic property to every network.  Therefore, the 
generalized notion of “non-equilibrium dynamic traffic assignment” is necessary to 
describe certain networks when traffic is represented with the more realistic physical 
queue paradigm. 
  
7.2 Future research directions 
 

Many research directions are possible. Some are identified as below: 
 

7.2.1 Travel choice principle 
 
As seen in the numerical study, in the absence of equilibrium, the traffic pattern may 

keep on evolving. Of particular interest are the stability and periodicity of the changing 
traffic pattern. The numerical study showed that the change in overall network travel 
time can be rather abrupt, with its magnitude of change lying within a limit of around 
10%, which is perhaps consistent with our experience and expectation.  Yet theoretical 
explorations of the network behaviour under non-equilibrium, bounds of the changes in 
the total system travel time, periodicity of the changes, and their relations to the 
travellers’ aggressiveness in route swapping, etc. are interesting and important questions 
to be answered in future research. The thesis only provides an initial step toward this 
direction. Alternatively, one may develop other travel choice principles that are 
behaviourally sound and consistent with actual travel behaviour. 

 
7.2.2 Traffic flow modelling 

 
Lo and Szeto (2002a) modelled the traffic-flow component as a unique mapping 

yielding route travel times given route flows, which allows the encapsulation of a range 
of dynamic traffic flow models in DTA. One can employ car-following simulation traffic 
flow models, continuum traffic flow models, and others in this mapping as long as they 
can produce a unique mapping between the route travel times and route flows through 
their route travel time extraction procedure. One can develop advanced traffic flow 
models based on these existing traffic flow models to capture realistic traffic behaviours 
such as shockwaves, queue formulation and dissipation, and queue spillback, lane 
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changing behaviour, hysteresis phenomenon, etc., and use the unique mapping to 
encapsulate the advanced traffic flow models in a DTA framework.   
 
7.2.3 Link travel time functions 

 
Encapsulating an entire traffic flow model using the unique mapping can greatly 

improve the solution quality, but at the same time increases the computation effort, as 
repeated traffic simulations are required to update the route travel times from iteration to 
iteration. Therefore, the question is how to speed up the solution process. Can we adopt 
travel time functions to approximate the unique mapping at some stages inside the 
computations to speed up the solution processes? Can this guarantee convergence? 
Alternatively, will there be sufficiently refined (even though not perfectly correct) travel 
time functions to replace the approach of encapsulating an entire traffic flow model? 
This approach will have tremendous saving in computational time.  
 
7.2.4 Parallel computing 

 
As mentioned before, with the encapsulating of the effects of physical queues in DTA, 

one can only rely on less restrictive algorithms such as genetic algorithms to solve the 
physical-queue DTA models. However, genetic algorithms have to evaluate the objective 
values of each trial solution, which is a time-consuming process. This is especially true if 
the objective function is complicated; say the objective function includes the whole 
traffic simulation model. To increase the computation efficiency, a possible approach is 
implementing parallelized genetic algorithm (e.g., Wong et al., 2001) for solving these 
models. This approach makes good use of the inherent nature of genetic algorithms that 
the evaluation of each trial solution can be done independently, and hence the 
performance of genetic algorithms can be greatly improved by means of parallel 
computing. 
 
7.2.5 Time-dependent path set generation 

 
A large network involves many paths, although most would not be used. A large path 

set makes path enumeration impossible. However, to deal with queue spillback properly, 
we must use path-based DTA models and hence path-based algorithms. One possible 
approach to deal with the large path set is to generate a small path set in the path-based 
solution algorithm. Compared with the path-based solution algorithms for static models, 
an additional effort on the path set generation for DTA models is required because we 
need to consider time-dependent paths. In particular, the effect of junction blockages can 
cause the network configuration temporally change, which must be duly handled. This 
raises questions: Can the path set generation rules used in the static traffic assignment be 
modified and extended to the dynamic case? Are there any other methods to efficiently 
deal with the temporally changing network configuration under the effects of physical 
queues?  How does the choice of path set generation rules affect the solution speed and 
convergence of the algorithm? These questions require further study.  
 
7.2.6 Framework for online applications 

 
One of the applications of DTA models is to predict the real time traffic flow and 

update the time-dependent OD matrix for online application purposes. Existing literature 
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focuses on using simulation DTA models or analytical point queue DTA models for this 
purpose. Simulation models cannot guarantee the solution optimality; Point queue 
models cannot capture the effect of physical queues. Developing a framework using 
physical-queue DTA models for this purpose is definitely another research direction. For 
this issue, one can improve the framework for non-congested networks proposed by Ran 
et al. (2002a) to congested networks wherein junction blockage is common. 
 
7.2.7 Solution approaches 

 
There are a number of solution approaches, including swapping algorithms (e.g., Smith 

and Wisten, 1995; Huang and Lam, 2002), projection methods (e.g., Lo and Szeto, 
2002a, 2004, 2005; Szeto and Lo, 2004), genetic algorithms (e.g., Lo and Szeto, 2002b), 
diagonalization algorithm (Ran et al., 2002b), and method of successive averages (e.g., 
Tong and Wong, 2000).  Which approach is more efficient for solving physical-queue 
DTA models? Which approach can guarantee convergence under the physical-queue 
consideration?  How do the parameters in the algorithms affect the efficiency and 
convergence? These questions are worthwhile future research topics. 
 
7.2.8 Model calibration and validation 

 
The evaluation and prediction from DTA models rely heavily on how well they 

represent the actual traffic. Therefore DTA models must be calibrated and validated, 
both for the traffic-flow component and the travel choice principle. However, traffic data 
are full of noise. Gathering wrong data definitely affects the prediction and evaluation 
results. How should we employ the traffic data with noise to calibrate traffic flow 
models or the link performance functions? What is the methodology to validate the 
proposed travel choice principle? These questions must be duly considered before 
applying the models for evaluation, planning, and operations.  

 
All the above research directions are equally important from the practical and 

theoretical point of views. The authors are currently tackling some of the above. 
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