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We consider a city with a central business district (CBD) with a road network outside of the CBD that is 

relatively dense and is considered to be a continuum. In this transportation system, several classes of users with 
different perceptions and behavior are considered. Their demands are continuously distributed over the city, 
and their travel patterns to the CBD satisfy the user equilibrium conditions under which each individual user 
chooses the least costly route in the continuum to the CBD. A logit-type demand distribution function that 
incorporates housing rent and travel cost is specified to model the housing location choice behavior of the 
commuters. A bi-level model is set up for modeling the housing allocation problem in the continuum 
transportation system. At the lower level, a set of differential equations is constructed to describe this housing 
location and traffic equilibrium problem. We present a promising solution algorithm that applies the finite 
element method (FEM) to solve this set of differential equations. At the upper level, a constrained 
minimization problem is set up to find the optimal housing provision pattern that maximizes the total utility of 
the system. The FEM and convex combination method are proposed to solve the minimization problem with 
the sensitivity information from the lower level. A numerical example is given to show the workability of the 
proposed bi-level model and the effectiveness of the solution algorithm. 

 
KEYWORDS: Housing allocation problem, transportation system, continuum model, bi-level programming, 

finite element method 
 

1. INTRODUCTION 
 
It is well recognized that land-use and transportation systems interact extensively with 

each other, and that the consideration of only one of these systems will not fully address 
the system’s responses to major infrastructure developments and policy changes. In the 
past decades, there were a number of influential studies linking the land-use (especially 
housing) with the transportation system. One of the earliest works was Solow and 
Vickrey (1971), which studied the optimal allocation of land between housing and 
transportation in a linear city. They suggested that the market value of land was a poor 
guide on land-use decisions. Further to this research, Solow (1972), Mirrlees (1972), 
Dixit (1973), Kanemoto (1976), and Arnott (1979) introduced different models for 
identifying the optimal land-use pattern that maximized the per capita utility or total 
system utility, in a monocentric linear city with congestion-dependent transportation cost 
function. For a complex network system, Boyce and Matsson (1999) recently adopted 
the network equilibrium approach and divided the problem into two levels. At the lower 
level, they incorporated housing rent and home origins into the traditional discrete 
network equilibrium model. Housing rent is one of the main decision factors in the 
choice of home location. At the upper level, the social benefits that are achievable by the 
users of the system are maximized with respect to the allocation of housing provision, 
which in turn affects housing rents at the lower level. Consequently, this bi-level model 
provides transportation system planners with a useful tool for the optimal allocation of 
housing units to minimize overall travel disutility that takes into account the 
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corresponding changes in land-use patterns. Based on the idea of Boyce and Matsson 
(1999), we propose a continuum model for the study of the macroscopic role of the 
effect of housing rent and the interaction between housing and travel patterns in land-use 
and transportation systems on a regional scale. 

In the literature, the modeling of traffic equilibrium problems can be classified into two 
general approaches: the discrete modeling approach and the continuum modeling 
approach. The discrete modeling approach, in which each road link within the network is 
modeled separately and the demand is assumed to be concentrated at hypothetical zone 
centroids, is commonly adopted for detailed planning. The continuum modeling 
approach, in contrast, is used for the initial phase of planning and modeling in broad-
scale regional studies, in which the focus is on the general trend and pattern of the 
distribution and travel choice of users at the macroscopic, rather than detailed, level. In 
the continuum approach, a dense network is approximated as a continuum in which users 
are free to choose their routes in a two-dimensional space. The fundamental assumption 
is that the differences in modeling characteristics, such as the travel cost and the demand 
pattern, between adjacent areas within a network are relatively small as compared to the 
variation over the entire network. Hence, the characteristics of a network, such as the 
flow intensity, demand, and travel cost, can be represented by smooth mathematical 
functions (Vaughan, 1987). A promising extension to modeling the study area of an 
arbitrary city shape and the advancement of the solution algorithm have recently been 
made (Wong, 1998; Wong et al., 1998; Ho and Wong, 2005a, b; Ho et al., 2005, 2006), 
which adopted the finite element method (FEM) to solve the resultant continuum model 
(Zienkiewicz and Taylor, 1989). 

The continuum modeling approach has various advantages over the discrete modeling 
approach in macroscopic studies with very dense transportation systems (Blumenfeld, 
1977; Taguchi and Iri, 1982; Sasaki et al., 1990; Gwinner, 1998). First, the problem size 
for modeling a dense transportation network can be significantly reduced in the 
continuum-modeling paradigm, because the modeled system can be approximated by a 
set of smooth mathematical functions that are characterized by a much smaller number 
of parameters. Second, less data is therefore required in setting up a continuum model, as 
compared to the detailed representation of a dense network in the discrete modeling 
approach. This makes the continuum model more appealing for macroscopic studies in 
the initial phase of design because the resources for the collection of data in this phase 
are usually very limited. Third, the continuum modeling approach offers a better 
understanding of the global characteristics of a road network. As the numerical results of 
a continuum model can be visualized in a two-dimensional sense, the influence of 
different model parameters and the spatial interaction between locations can easily be 
detected and analyzed.  

In this study, the land-use system, which is characterized by housing supply and 
housing rent, is considered in a continuum traffic equilibrium model. Similar to the study 
of Boyce and Matsson (1999), this housing and transport problem is formulated as a bi-
level model. The lower-level subprogram, which incorporates the housing-related 
parameters into the traffic equilibrium problem, is formulated as a set of differential 
equations (Ho and Wong, 2005b) and will be discussed in Section 2. Section 3 
introduces the upper-level subprogram, which the housing provision pattern is optimized 
according to the total disutility incurred by users, and the solution algorithm adopted for 
this subprogram. Section 4 presents a numerical example to demonstrate the 
effectiveness of the proposed methodology. 
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2. LOWER-LEVEL SUBPROGRAM 
 

2.1 Model formulation 
 
This section introduces the lower-level subprogram for the housing and transportation 

problem, in which we consider a modeled city of an arbitrary shape with a single CBD, 
as shown in Figure 1. We assume that no users pass through the outer boundary. The 
inner boundary embraces the central business district (CBD) of the modeled city, in 
which activities such as work and school are concentrated. Users travel between their 
demand locations in the city region and the CBD along the least costly route. For broad-
scale planning, we assume that housing is continuously distributed in the suburbs and 
that the activities are concentrated in the CBD. The model describes the interaction 
between the housing locations of users and the traffic equilibrium pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1: The modeled city with an arbitrary shape for the housing location model 
 
Several classes of users are considered in this housing location model and different 

classes of users have different perceptions of travel costs, housing rent, and congestion 
costs. The incorporation of multiple classes of users adds realism to the model 
representation, because users with different perspectives and behavior compete for 
resources, such as road space and housing units. The set of differential equations that 
governs this housing location model comprises the flow conservation equation, travel 
cost potential, demand distribution function, and several boundary conditions. Consider 
the following flow conservation equation. 
 Mmm Nmyxyxqyx ∈Ω∈∀=+⋅∇ ,),(,0),(),(f , (1) 
where )),(),,((),( yxfyxfyx mymxm =f  is the flow vector (expressed as the number of 

users that cross a unit width) of class m users at location ( )yx,  within the modeling 
region Ω; ),( yxqm  is the density of demand (expressed as the number of users per unit 
area) of class m users at location ( )yx, ; and NM is the number of classes. We now define 
the travel cost potential. Let ),( yxc  be the unit travel time (that is expressed in hours per 
unit length of travel) at ( )yx,  and this unit travel time function is defined as  
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where ),( yxa  is the free-flow travel time and ),( yxb  is the congestion sensitivity 

parameter at location ( )yx, . ( ) ( ) ( )22 ,,, yxfyxfyx mymxm +=f  is the flow intensity of 

class m users. The parameter γ is used to account for the nonlinear effect of the total flow 
on the local unit travel time. For a positive value of time pm the unit travel time as 
defined in equation (2) can be transformed into the unit transportation cost cm(x, y) (that 
is expressed in dollars per unit length of travel) at ( )yx,  for class m users, and is defined 
as follows. 
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where pm is the value of time for the transformation of the unit travel time into the unit 
transportation cost for class m users. ),( yxam  and ),( yxbm  are the free-flow and 
congestion-related parameters, respectively, for class m users. The different unit 
transportation costs of these classes of users are due to the different values that they 
assign to travel time and their tolerance for congestion. Furthermore, for a given flow 
pattern fm and unit transportation cost cm, we consider a scalar function ),( yxum , which 
can be proven to be the total travel cost of class m users at location ( )yx, ,  for class m 
users that satisfies the following relation. 

 Mm
m

m
m Nmyxyxu

yx
yxyxc ∈Ω∈∀=∇+ ,),(,0),(
),(
),(),(

f
f . (4) 

In equation (4), the flow vector is the direct opposite of the gradient of the scalar 
function ),( yxum , that is, 
 0),,(// ),( ≠∀∇− mmm yxuyx ff , (5) 
where “//” means that the two vectors are in the same direction. The norm of this 
gradient equals the local unit transportation cost, that is, 
   ),(),( yxuyxc mm ∇= . (6) 

For any used path l of a class m user from home location ( ) Ω∈x,yO  to the CBD (D), 
the total travel cost that is incurred by the user can be obtained as 

 ( )[ ] ( ) )()()(d,, OuOuDuucscDyxOu mmml ml m

m
ml ml =−−=⋅∇−=⋅== ∫∫∫ dsds

f
f , (7) 

using equation (4) and the fact that mm ff /  is a unit vector that is parallel to ds along 
path l. Therefore, the total travel cost is independent of the used paths, and ),( yxum  can 
be interpreted as the total travel cost or the cost potential that is incurred by class m users. 
In contrast, for any unused path l

~
 of a class m user between the home location 

( ) Ω∈x,yO  and the CBD, the total travel cost that is incurred by the user is 

 ( )[ ] ( ) )()()(d,, ~~~~ OuOuDuucscDyxOu mmml ml m

m
ml ml =−−=⋅∇−=⋅≥= ∫∫∫ dsds

f
f , (8) 
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which is also based on equation (4). Thus, ( )[ ] )(,,~ OuDyxOu ml ≥ . The inequality in this 

derivation occurs because there might be some segments of the path l
~

 on which the 
normal vectors mm ff /  and ds are not parallel, and thus ( ) dsff ⋅≥ mms /d . Therefore, 
the total travel cost for any unused paths is greater than or equal to that for the used paths. 
The model thus guarantees that the users of the same class choose the least costly route 
in the city region in a user-optimal manner. 

 
The interaction between housing location choice and traffic equilibrium is governed by 

a demand distribution function, which is used to represent the way in which users choose 
their home location in the city. Consider the demand of class m users in an 
infinitesimally small area Ωδ . We assume that the choice of home location is based on 
the utility, Um (which solely depends on the housing rent at that home location and the 
travel impedance between the home location and the CBD), that these users experience 
and is specified as  
 ( )( ) Ω=Ωω= d),(d),(),,(expd yxqyxuyxrUkQ mmmmmmm , (9) 
where mω  is a positive scalar parameter that measures the sensitivity of class m users to 
the utility level that is associated with location (x, y), mk  is the proportional constant, 

mQ  denotes the fixed total demand of class m users in the city, mQd  is the demand that 
is distributed to the infinitesimally small area, and 
 ( ) Mmmmmm NmyxyxuyxryxuyxrU ∈Ω∈∀−−= ,),(),,(),(),(),,(  (10) 
is the utility function that is perceived by class m users at location (x, y). This utility 
function consists of two components. The first term is housing rent 

( ) ( )( ))),(),(/(),(),(1,, yxqyxHyxqyxyxyxr mmm −β+α= , which depends on the total 

demand density ( )∑ =
= MN

j j yxqyxq 1 ,),(  in this location and the total housing supply 

density ),( yxH  (expressed as the number of housing units per unit area and is held 
fixed in the lower-level subprogram), and where ( )yxm ,α  and ( )yxm ,β  are positive 
scalar parameters that represent the fixed and demand-dependent components of the rent 
function at location (x, y). The fixed rent component represents the minimum rent that a 
resident has to pay to occupy a housing unit, where the demand-dependent component 
represents the additional rent that residents have to spend to secure a housing unit in a 
competitive market, in which housing rents increase with demand. As the aim of this 
paper is to give a preliminary study of the effect of housing provision and housing rent 
on demand distribution, a simple and exogenously defined housing rent function is 
adopted instead of considering the demand and supply of the housing market for 
endogenous equilibrium rent. The housing rent function is taken such that when the 
demand approaches the housing supply, the housing rent (or more precisely the demand-
dependent term of the housing rent function) increases to a very large value. This 
functional form is based on the following rationales. First, when comparing the vacant 
housing unit to the occupied housing unit, the vacant unit normally has a higher disutility 
due to its poorer view, higher maintenance cost, etc. Thus, the demand-dependent term 
of the housing rent increases as the vacancy of housing unit decreases. Second, this 
functional form ensures that the demand does not exceed the housing provision, as no 
demand is distributed to a location at which the housing rent approaches infinity. 
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The second term in equation (10) is the total travel cost that class m users experience 
between their home location and the CBD. This form of utility function assumes that 
users decide upon their home location according to two criteria, housing rent and total 
travel cost. The first equality of equation (9) shows that the housing demand for a given 
area is directly proportional to the exponential of the perceived utility that users 
experience and the size of the area. 

As the housing rent function ( )yxrm ,  is solely dependent on the total demand density 
q(x,y), the utility function ( )),(),,( yxuyxrU mmm  can then denoted as 

( )),(),,( yxuyxqU mm . We could then integrate the first equality of equation (9) over the 
whole modeled region, which produces 
 ( )( )∫∫∫∫ ΩΩ

Ωω= d),(),,(expd yxuyxqUkQ mmmmm . (11) 

Hence, we have 

 
( )( )∫∫Ω ω

=
dΩ),(),,(exp yxuyxqU

Qk
mmm

m
m . (12) 

Substituting km into the second equality of equation (9) produces 

 ( )( )
( )( ) M

mmm

mmm
mm Nmyx

yxuyxqU
yxuyxqUQyxq ∈Ω∈∀=

ω

ω
−

∫∫Ω
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Equations (1), (4), and (13) constitute the governing equations of this housing location 
model. In addition to these governing equations, the following two boundary conditions 
should also be satisfied. 
 Mcm Nmyxu ∈∀Γ∈∀= ,),(,0 , (14) 
 Mm Nmyx ∈∀Γ∈∀= ,),(,0f . (15) 
In equation (14), as users on cΓ  are already at the CBD boundary, transportation cost 
should not be incurred, which means that the travel cost potential vanishes. Equation (15) 
ensures that there is no flow across the outer boundary Γ of the modeled city. 
 
2.2 Solution algorithm 

 
The finite element method (FEM) is used to approximate the continuous variables in 

the modeled city (Zienkiewicz and Taylor, 1989). As there is no explicit objective 
function for this housing location model, the mixed finite element procedure that was 
developed by Wong et al. (1998) cannot be applied directly. Thus, we adopt the Galerkin 
formulation of the weighted residual technique (Cheung et al., 1996; Zienkiewicz and 
Taylor, 1989). In addition to the Galerkin formulation, a modified trust region method 
that is known as the Levenberg-Marquardt Iterative Scheme (Ho and Wong, 2005a) can 
be used to effectively solve least-squares problems for large and sparse systems. By 
using the Galerkin formulation, the differential equations (1), (4), and (13) are 
transformed into the following equivalent integral expressions. 
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 ( ) ),(,,0d),(),(),( yxNmyxyxqyx Mmm ψ∈∀=Ωψ+⋅∇∫∫Ω f , (18) 

where ),( yxψ  is the trial (or weight) function in the weighted residual technique. 
Boundary conditions (14) and (15) are enforced by taking a zero weight function 
(Cheung et al., 1996). In the Galerkin formulation, the local interpolation function of the 
finite element is used as the trial function. The modeling area is first discretized into a 
finite element mesh, in which the Galerkin formulation is applied at the element level. 
The governing equations for all user classes at a particular finite element node s are 
given as follows. 
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where eΩ  denotes the domain of the finite element e, sE  is the set of finite elements 
that connects node s, ),( yxNs  is the local interpolation function of the finite element 
that corresponds to node s, smr  is the nodal residual vector for class m users at node s, 
which represents the extent to which the governing equations (1), (4), and (13) are 
locally satisfied around node s, and Ψ  is the solution vector of the problem. For the 
global satisfaction of the governing equations, we require that  
 ( ) ( )( ) 0ΨrΨR == smCol , (20) 
which defines a system of non-linear equations. We apply the Newton-Raphson 
algorithm with a line search to solve the problem, in which we derive the iterative 
equation 
 kkkk RJΨΨ 1

1
−

+ λ−= , (21) 
where kJ  is the Jacobian matrix of vector kR  in iteration k, and λ is the step size, 
which is determined by the golden section method (Sheffi, 1985). The solution 
procedure is summarized as follows. 

 
Solution Procedure A  
Step A1: Find an initial solution 0Ψ . Set k = 0. 
Step A2: Evaluate ( )kΨR  and ( )kΨJ . 
Step A3: If the relative error ( ) ,/ kk ΨΨR  is less than an acceptable error ε, then 

terminate, and kΨ  is the solution. 

Step A4: Otherwise, apply the golden section method to determine the step size *λ , 

which minimizes the norm of the residual vector ( ) ( )( )kkk ΨRΨJΨR 1−λ− . 

Then, set ( ) ( )kkkk ΨRΨJΨΨ 1*
1

−
+ λ−= . 

Step A5: Replace kΨ  with 1+kΨ . Set k = k + 1 and go to Step A2. 
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3. UPPER-LEVEL SUBPROGRAM 
 

3.1 Model formulation 
 
This section introduces the upper-level subprogram of land-use and transport problems 

that aims to find the optimal housing provision pattern that maximizes the total utility of 
users within the system for a given budgetary constraint. A constrained optimization 
problem of the housing provision variable is defined as follows. 
 ( ) ( ) ( ) ( )( )∫∫ ∑Ω

Ω= d,,,,Maximize ***

m
mmm yxuyxqUyxqz h

h
 (22a) 

subject to 
 ( ) ( ) ( )( ) ( ) Ω∈∀≥+− yxyxhyxhyxH ,,0,,, 0max , (22b) 
 ( ) ( ) Ω∈∀≥ yxyxh ,,0, , (22c) 

 ( ) ( ) 0d,, ≥Ω− ∫∫ Ω yxhyxPB , (22d) 

 ( ) ( ) ( ) 0d,,, *
0 ≥Ω−+∫∫ Ω yxqyxhyxh , (22e) 

where Um is the utility function for class m users, ( )yxh ,0  is the existing housing 
provision and ( )yxh ,  is the additional housing provision at a particular location (x, y). 

( )yxH ,max  is the maximum possible housing development at location ( )yx,  that is 
constrained by the topography, existing transportation network, and planned land use 
pattern of that location. ( )yxqm ,*  and ( )yxum ,*  are each the optimal demand and the total 
travel cost for class m users at location ( )yx,  as derived from the lower-level 
subprogram for a given housing supply density ( )yxH ,  (where 
( ) ( ) ( )yxhyxhyxH ,,, 0 += ). The superscript (*) means that the variables are the optimal 

solutions that satisfy all of the governing equations in the lower-level subprogram. 
Similarly, ( )yxq ,*  represents the total demand that is derived from the lower-level 
subprogram, B is the budget that is available for building additional housing, and 
( )yxP ,  is the provision cost of a housing unit at location ( )yx, . Constraint (22b) states 

that the total housing supply ( ( )yxH , ) should always fall within the development 
capacity ( ( )yxH ,max ), which governs the maximum number of additional housing units 
that are added at a particular location. Constraint (22c) governs the non-negativity of the 
additional housing units because this study assumes that no demolition of existing 
housing units will occur. Constraint (22d) is the budgetary constraint that ensures that 
the total provision cost is within the available budget. Constraint (22e) ensures that there 
are enough housing units for all of the users within the system. By considering the 
functional form of this constraint, it is possible that some locations will not have enough 
housing units for the number of users, even if the constraint is satisfied. However, 
according to the definition of the utility function in equation (10), the demand at any 
point within the region is assured – through the lower-level subprogram – to fall within 
the housing supply. 
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3.2 Solution algorithm 
 
As there are inequality constraints within the maximization problem that is defined in 

equation (22), the Lagrangian approach with a Newtonian algorithm (Wong et al., 1998; 
Wong, 1998) that is adopted for continuum models cannot be used to solve the model. 
Rather, the convex combination method (Sheffi, 1985) that is commonly used in the 
discrete networking approach is proposed. To apply the convex combination method for 
solving minimization problem (22), the continuous variables must be converted into 
discrete form that can be carried out through the application of the FEM (Cheung et al., 
1996) to the maximization problem (22). In the FEM, constraints (22d) and (22e) are 
modified as 
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nnn

N

n
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where NFN is the total number of finite element nodes within the mesh, Ni represents the 
interpolation function of the FEM for node i within the finite element mesh, Pei 
represents the provision cost of housing units at node i in element e, Δn is the area of 
finite elements that surrounds node n, Ωen and Ωe are, respectively, the region that 
connects with node n and the finite element e, and nh , 0

nh , and *
nq  are the additional 

housing units, existing housing units, and the total demand at the finite element node n. 
Based on the convex combination method and the transformation in equations (23) and 
(24), a linear program for the determination of the descent direction of the maximization 
problem (22) can be set up as follows. 
 ( ) vh

v
⋅∇zMinimize  (25a) 

subject to 
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 FNn Nnv ∈∀≥ ,0 , (25c) 
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where ( )FNn Nnh ,,1,Col …==h  and ( )FNn Nnv ,,1,Col …==v  are the current and 
auxiliary solution vectors of the linear program (25). To apply the convex combination 
method, the gradient of the objective function ( )hz  of the original maximization 

problem must be evaluated. To find the gradient, derivatives such as hqm ∂∂ *  and 

hum ∂∂ *  must be calculated and may be derived from a sensitivity test of the lower-level 
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variables ( *
mxf , *

myf , *
mu , *

mq ) to the upper-level variables (h). By denoting the lower-

level variables as *
lΨ  and the upper level as uΨ , equation (20) can be modified as 

 ( ) 0ΨΨR =ul ,* . (26) 
By taking a partial derivative of uΨ  on the left-hand side of equation (26) and 

rearranging it, we have 

 [ ] ( )[ ] ( )[ ]ulull uu
ΨΨRΨΨJΨ ΨΨ ,, *1** ∇=∇

−
. (27) 

Equation (27) is the matrix of the sensitivity of the optimized lower-level variables 
( *

lΨ ) to the upper-level variables ( uΨ ) and may be found for each solution of the lower-
level subprogram. With the help of the sensitivity matrix in equation (27), the descent 
direction of the maximization problem (22) can be found by solving the linear program 
(25). The following solution procedure is adopted to solve the housing provision model 
in this housing and transport problem. 

 
Solution Procedure B 
Step B1: Set k = 1.  Take the initial solution for the upper level to be 0hΨ == 11u . 
Step B2: With ukΨ  (or kh ), solve the lower-level problem that is based on solution 

procedure A to find the solution to the lower level lkΨ . 
Step B3: Using lkΨ , evaluate the sensitivity matrix according to equation (27). 
Step B4: Use the sensitivity matrix from the lower level to find the auxiliary vector kv . 
Step B5: Apply the golden section method (with the smallest search interval of δ) to 

determine the step size [ ]1,0* ∈λk , which maximizes the objection function 

( )( )kkkkz hvh −λ+  from equation (22a). Then, set ( )kkkkk hvhd −λ+= * . 
Step B6: If ( ) ( )kk zz hd > , then set kk dh =+1 , 1+= kk  and go to Step B2; otherwise 

stop and kh  (or ukΨ ) is the solution to the upper-level subprogram, and lkΨ  
is the corresponding solution to the lower-level subprogram. 

 
4. NUMERICAL EXAMPLE 

 
A numerical example is given to demonstrate the characteristics of this bi-level 

housing allocation problem and also the effectiveness of the solution algorithms that are 
adopted for the upper and lower level. This example considers a city of an arbitrary 
shape, as shown in Figure 1. This city spans about 35 km from east to west and 25 km 
from north to south. Its CBD is located at the southwestern corner of the city. Figure 2 
shows the finite element mesh that is used to solve the example problem. 

In this example, we consider two classes of users. The total demand of the Class 1 
users is 60,000 units and that of the Class 2 users is 80,000 units. We assume that each 
user takes up one housing unit and travels to the CBD during the morning peak hours 
and returns home along the reverse route during the evening peak hours. The travel cost 
represents the sum of the costs in both periods or can be interpreted as the cost of travel 
at that location. The sensitivity parameters for the housing choice functions in equation 
(13), 1ω  and 2ω  for Class 1 and Class 2 users are 0.0015 and 0.0020. The unit travel 
time function is 



31 

 

0 5 10 15 20 25 30 35 40 45
(km)

 ( ) ( ) ( ) ( ) ( )( ) 2.1
21 ,,,00001.0,0125.0, yxyxyxvyxvyxc ff ++= , 

where ( )yxc ,  is measured in hours per kilometer, and ( )111 , yx ff=f  and ( )222 , yx ff=f  

are flow vectors of Class 1 and Class 2 users at location ( )yx, . 

( ) 22 )20()14(005.010.1, −+−−= yxyxv  is the factor that accounts for the variation in 
the location-dependent parameters of the local transportation cost function. The factor 
increases when the distance from the CBD decreases, which reveals the network 
characteristic that the junctions are more closely spaced nearer to the CBD. Hence, the 
parameters of the local transportation cost function increase. The value of time pm for 
Class 1 and Class 2 users are 40 HKD/h and 60 HKD/h, respectively.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2: The finite element mesh for the city continuum of Figure 1 
 

The housing rent functions are 
 Class 1 users: ( ))/(101801 qHqr −+= , 
 Class 2 users: ( ))/(1802 qHqr −+= , 
where 1r  and 2r  are measured in HKD. Class 1 users are more sensitive to housing rent 
than Class 2 users, which means they place a greater value on housing rent when they 
make a decision about home location. Class 2 users, however, are more sensitive to 
travel cost when they choose their home location. In this bi-level model, the existing 
housing units, h0n, is taken as a constant of 350 units/km2 over the whole city. The 
maximum possible housing development is assumed to be 600 units/km2 for all of the 
locations ( )yx,  within the modeled city. The budget that is available for additional 
housing units is assumed to be 1 billion HKD and the unit provision cost function that is 
used in this example is 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+−−= 22 )20()14(005.050.110000, yxyxP , 

where ( )yxP ,  is measured in HKD and (14,20) is the location of the CBD. This function 
increases as the distance from the CBD decreases, as it is assumed that the cost of land 
acquisition is higher near the CBD. This assumption is reasonable because the CBD is 
more accessible from these locations and the land is more precious than at locations that 
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are further away. By taking the acceptable error ε equal to 10-7 for the lower-level model 
and the smallest search interval δ as 0.02 in the upper-level model, this numerical 
example is solved. The convergence curves for the housing location and housing 
provision model are shown in Figures 3a and 3b. 

 
(a) Solution procedure A 
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(b) Solution procedure B 
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FIGURE 3: Typical convergence plots for the solution procedures 

 
Figure 3a shows a typical convergence curve for the housing location model by using 

the solution algorithm A. The solution converges exponentially and meets the acceptable 
error in eight iterations. Figure 3b shows the convergence curve of the housing provision 
model. The solution to the upper-level subprogram is obtained in three iterations, which 
takes approximately three hours using a personal computer with P4 1.7 GHz CPU and 
256 Mb RAM, when solution procedure B is employed. 

Figure 4 shows the flow trajectories of system users that travel from their housing 
location to the CBD. These trajectories curve around the congestion areas (i.e., the 
proximity of the CBD) to minimize their travel cost on a user-optimal route. The total 
travel cost and flow intensity for Class 1 users after the upper-level optimization are 
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 shown in Figures 5 and 6. The total travel cost increases with the distance from the CBD, 
whereas the flow intensity decreases. The result of flow pattern, flow intensity, and total 
travel cost for Class 2 users are not shown in this paper as they are similar to that of 
Class 1 users. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4: Flow pattern of Class 1 users 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5: Total travel cost of Class 1 users 
 

Figure 7 shows the additional housing units when the total utility of users within the 
system is maximized. The total housing density is omitted, because it has exactly the 
same pattern as Figure 7 but only increased by a constant value of 350 unit/km2 that 
accounts for the assumed existing housing provision. In Figure 7, we can observe a 
fringe of optimal location for the provision of additional housing units, which is located 
about 10 km to the east of the CBD. According to equations (10), (22a) and the 
definition of the housing rent function, the total utility ( )hz  depends on the demand 

( *
mq ), the corresponding housing rent ( mr ), and the total travel cost ( *

mu ). Any change 
in the modeling environment, such as an increase in housing provision, the improvement 
of the transportation network, or the introduction of a housing rent subsidy, changes the 
housing rent and the total travel cost of a portion (or even all) of the users. Hence, the 
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total utility of users increases or decreases based on these changes. If this fringe of high 
additional housing density is moved to the east, then the total utility of users within the 
system decreases. Under this allocation, users are encouraged to live in locations that are 
further away from the CBD because housing rent is lowered by the increase of supply in 
these locations, which in turn causes the total travel cost to increase. As this increase 
cannot be compensated by the additional number of users who can take advantage of the 
rent benefit increases due to the low housing provision cost, there is a decrease in the 
total utility as compared to the optimal location. In contrast, if this fringe is moved 
towards the CBD, then the total utility also decreases although users pay less to travel to 
the CBD because they prefer to live closer. This is because the number of users that are 
able to take advantage of the rent benefit is limited due to the high provision cost of 
housing at this location, which overrides the advantage of travel cost, the total utility of 
this additional housing allocation is smaller. By combining these two situations, it is not 
difficult to conclude that there is an optimal location for the additional housing units to 
the east of the CBD. 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

FIGURE 6: Flow intensity of Class 1 users 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 7: Distribution of the additional housing units 
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The density of the additional housing in the western part of the modeled city is also 
relatively high, even though the cause is slightly different from that of the optimal 
additional housing unit fringe on the eastern part of the modeled city. Figure 6 shows 
that the flow intensity is relatively low in the western part of the city, as compared with 
the same distance to the east of the CBD because the CBD is in the western part of the 
city. This causes the catchment and the flow intensity on the western side to be smaller. 
The allocation of housing units in the western part of the city aims to encourage users to 
live there and make use of the less congested traffic conditions to further increase the 
total utility of all of the users within the system.  

Figure 8a shows the demand contours of class 1 users. The demand pattern is similar to 
the pattern of the additional housing units in Figure 7 because Class 1 users are more 
concerned about housing rent than travel cost and prefer to live in locations in which the 
housing rent is lower. Hence, Class 1 users are concentrated in locations with ample 
housing supply in which the housing rent is the lowest, and the demand pattern follows 
the same pattern as that of the additional housing units. Figure 8b shows the demand 
contours of the Class 2 users, from which it can be seen that the demand decrease with 
distance from the CBD because Class 2 users are more concerned about travel cost. 
Hence, a change in housing provision patterns does not substantially change the 
incentive to live close to the CBD. Figures 9a and 9b show the housing rent of Class 1 
users before and after the optimization of the upper-level subprogram. At optimum, the 
housing rent of Class 1 users decreases as additional housing units are provided. In 
Figure 9b, there is a fringe of lower housing rent located about 10 km to the east of the 
CBD and this fringe is due to the high provision of additional housing units in these 
locations. The pattern of housing rent for Class 2 users after the upper-level optimization 
is not shown as it is similar to that of Class 1 users. 

 
5. CONCLUSIONS 

 
In this paper, the continuum modeling approach is extended to incorporate the 

interaction between land-use, which is represented by the housing supply and housing 
rent ideas, and transport in a single model. The land-use and transport model is 
formulated into a bi-level model for a city of an arbitrary shape with multiple classes of 
users. At the lower level, a combined housing and traffic equilibrium problem in a 
continuum transportation system is developed, the main objective of which is to 
incorporate housing-related parameters into the continuum traffic equilibrium model. 
This lower-level subprogram is formulated based on the Galerkin method with the 
weighted residual technique and the FEM. A Newtonian algorithm is adopted to solve 
this model, and a line search method is used to determine the step size. At the upper 
level, the optimal housing provision pattern is found by maximizing the total utility of 
the users within the system. This upper-level subprogram is formulated as a constrained 
maximization problem that is based on the optimized variables from the lower-level 
problem. By discretizing the constraints with the FEM, the convex combination method 
is adopted as the solution algorithm for the problem. A numerical example is given to 
demonstrate the effectiveness of the solution algorithms for both the upper- and lower-
level subprograms, and to display the interaction between land-use and transport that is 
modeled by the bi-level model. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8: The demand contours of (a) Class 1 users; (b) Class 2 users 
 

For this housing allocation problem there are several possible extensions for future 
research. First, the idea of multiple types of housing units, which differs in provision 
costs, rents and lot size, could be introduced. In such extension, the lower-level model 
could demonstrate the behavior of system users in choosing different types of housing 
(for example public or private housing) and their home location based on the lot size of 
the housing, transportation cost and housing rent. Also, the upper-level model could help 
the government (or the housing developers) to find the most socially beneficial (or most 
profitable) housing allocation pattern when competing with other housing providers. 
Second, by combining with the ideas introduced in Ho et al. (2006), the proposed model 
could be further extended to cities of multiple CBDs. Such housing allocation model 
with multiple CBDs could help to study the effect of housing provision on users’ choice 
of destination. Third, the idea of congestion-pricing could be introduced into this 
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housing allocation model. This is because the housing allocation pattern identified in this 
study is only a second-best solution, as the travel pattern is not socially optimized. Thus, 
by introducing congestion-pricing into the model, the housing allocation pattern 
becomes the first-best solution because both of the travel pattern and housing allocation 
pattern are optimized. Lastly, the idea of allocation of limited land between housing and 
transportation activities could also be considered for this housing allocation problem. 
This is because in real world land is limited, and thus the more the land is allocated to 
housing, the smaller amount of land can be used for other means such as transportation 
improvements. Therefore, a balance should be struck between the housing rent that 
depends on the number of housing units provided, and transportation cost that depends 
on the land allocated for the transportation infrastructures. 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 9: Housing rent of Class 1 users: (a) before upper-level optimization; (b) after 
upper-level optimization 
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